Improved sensitivity of polychlorinated-biphenyl-orientated porous-ZnO surface photovoltage sensors from chemisorption-formed ZnO-CuPc composites

نویسندگان

  • Mingtao Li
  • Guowen Meng
  • Qing Huang
  • Shile Zhang
چکیده

We report a new mechanism for the enhancement of porous-ZnO surface photovoltage (SPV) response to polychlorinated biphenyls (PCBs, a notorious class of persistent organic pollutants as global environmental hazard) based on copper phthalocyanine (CuPc) chemisorptive bonding on porous-ZnO. A new ZnO-CuPc composite is formed on the porous-ZnO surface due to the interaction between the surface ZnO and CuPc, with its valence band (VB) energy level being higher than that of the pristine porous-ZnO. So that the efficiency of the photogenerated-electron transfer from the composite VB to the adjacent ZnO's surface states is drastically increased due to the reduced energy gap between the transition states. As a result, the sensitivity of the PCB-orientated SPV sensor is much improved by showing amplified variation of the SPV-signals perturbed by PCBs adsorbed on the ZnO-CuPc@porous-ZnO sensitive material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

High-response organic field-effect transistor (OFET)-based NO₂ sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobil...

متن کامل

Self-Assembled 3D ZnO Porous Structures with Exposed Reactive {0001} Facets and Their Enhanced Gas Sensitivity

Complex three-dimensional structures comprised of porous ZnO plates were synthesized in a controlled fashion by hydrothermal methods. Through subtle changes to reaction conditions, the ZnO structures could be self-assembled from 20 nm thick nanosheets into grass-like and flower-like structures which led to the exposure of high proportions of ZnO {0001} crystal facets for both these materials. T...

متن کامل

Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates.

ZnO nanowires have been synthesized on porous silicon substrates with different porosities via the vapour-liquid-solid method. The texture coefficient analysed from the XRD spectra indicates that the nanowires are more highly orientated on the appropriate porosity of porous silicon substrate than on the smooth surface of silicon. The Raman spectrum reveals the high quality of the ZnO nanowires....

متن کامل

Miniaturized pH Sensors Based on Zinc Oxide Nanotubes/Nanorods

ZnO nanotubes and nanorods grown on gold thin film were used to create pH sensor devices. The developed ZnO nanotube and nanorod pH sensors display good reproducibility, repeatability and long-term stability and exhibit a pH-dependent electrochemical potential difference versus an Ag/AgCl reference electrode over a large dynamic pH range. We found the ZnO nanotubes provide sensitivity as high a...

متن کامل

Nanostructured hybrid ZnO thin films for energy conversion

We report on hybrid films based on ZnO/organic dye prepared by electrodeposition using tetrasulfonated copper phthalocyanines (TS-CuPc) and Eosin-Y (EoY). Both the morphology and porosity of hybrid ZnO films are highly dependent on the type of dyes used in the synthesis. High photosensitivity was observed for ZnO/EoY films, while a very weak photoresponse was obtained for ZnO/TS-CuPc films. Des...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014